$\operatorname{Pd}(0)$-Catalyzed Insertion-Cyclization Reaction of 2,3-Allenols with Aryl or Alkenyl Halides.
 Diastereoselective Synthesis of Highly Optically Active trans-2,3-Disubstituted Vinylic Oxiranes

Shengming Ma* and Shimin Zhao
Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, 354 Fenglin Lu Shanghai 200032, P. R. China

Received February 16, 1999
Allenes are a class of compounds with unique reactivities due to the existence of the two orthogonal π-bonds, and they have been found to be very useful intermediates in organic synthesis. ${ }^{1-3}$ Among our efforts in the area of allene chemistry, ${ }^{3}$ we developed an efficient one-step route to butenolides with potential biological activities via the $\operatorname{Pd}(0)$-catalyzed cyclization reaction of 1,2-allenic carboxylic acids with aryl or 1-alkenyl halides. ${ }^{3 \mathrm{c}}$ In this paper we give our results on the corresponding reaction of 2,3-allenols (Scheme 1).

The groups of Olsson ${ }^{4}$ and Marshall ${ }^{5}$ have shown that the Ag^{+}catalyzed cyclization reaction of 2,3-allenols affords 2,5-dihydrofuran derivatives, while Tsuji and co-workers ${ }^{6}$ reported that the $\operatorname{Pd}(0)$-catalyzed reaction of 2,3 -dienols with aryl or alkenyl halides produced β-aryl- or alkenyl- β-methyl- α, β-unsaturated enones via an insertion- β-elimination mechanism (pathway a, Scheme 1). We are interested in the possibility of the $\operatorname{Pd}(0)$ catalyzed reaction of organohalides and 2,3-allenols to form either 2,4-disubstituted-2,5-dihydrofurans (pathway b, Scheme 1) or 2,3disubstituted vinylic oxiranes (pathway c, Scheme 1).

In our first attempt, we synthesized 1,2-octadien-4-ol ${ }^{7}$ and studied its $\mathrm{Pd}(0)$-catalyzed cyclization reaction with PhI under various reaction conditions (Scheme 2). Luckily and surprisingly, we observed in our first try the formation of the three-membered ring, i.e., 2-(1^{\prime}-phenylethenyl)-3-(n-butyl)oxirane 3a, under the conditions for the corresponding cyclization reaction of 1,2-allenyl carboxylic acids (Scheme 2).3c The formation of the 2,5dihydrofuran derivative was not observed, and the Ag^{+}salt was not required (compare entries 1 with 2 and 3 with 4 , Scheme 2). After we screened several different reaction conditions, the stereoselectivity of formation of the two diastereoisomers was increased to 30:1 by using DMF as the solvent (compare entries $1-4$ with 5, Scheme 2). The relative configuration of the major isomer was established to be trans, as determined from the NOESY spectra of $\mathbf{3 e}$ (entry 5 , Table 1).

Using conditions A (entry 5, Scheme 2) as the standard reaction conditions, we studied the $\operatorname{Pd}(0)$-catalyzed highly diastereoselec-

[^0]
Scheme 1

Scheme $\mathbf{2}^{a}$
 $55^{\circ} \mathrm{C}, 14 \mathrm{~h}$
${ }^{a}$ Determined from $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of the crude product before separation using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard. ${ }^{b}$ Isolated yield. ${ }^{c} 23 \%$ of $1 \mathbf{a}$ was recovered. ${ }^{d} 18 \%$ of $1 \mathbf{a}$ was recovered. ${ }^{e}$ This set of reaction conditions is defined as conditions A .
tive epoxide formation reaction carefully, and some of our typical examples were listed in Table 1. The following points should be mentioned:
(1) In most cases, the diastereoselectivities of this reaction are fairly high.
(2) Both aryl and 1-alkenyl halides could afford the corresponding products in moderate to good yields (for the reaction with 1 -alkenyl iodides, see entries 4 and 11, Table 1).
(3) For the reaction of p-bromoiodobenzene, only the carboniodine bond reacted, while the carbon-bromine bond remained intact (entries 10 and 15, Table 1).

Optically active epoxides are considered as important synthetic intermediates. ${ }^{8}$ Jung et al. studied the rearrangement of vinylic

[^1]Table 1. $\operatorname{Pd}(0)$-Catalyzed Insertion-Cyclization Reaction of 2,3-Allenol and Aryl or Alkenyl Halides

${ }^{a}$ Diastereomer ratio; determined from $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of the crude products before separation. In all cases, except entries 4 and 7, the two isomers could not be separated via chromatography on silica gel using the conditions described in this paper. ${ }^{b}$ The minor isomer could be isolated by chromatography on silica gel. ${ }^{c}$ Cis isomer not observed. ${ }^{d}$ The data were also confirmed by HPLC. ${ }^{e}$ Determined from $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum.
epoxides for the synthesis of α-alkyl amino aldehydes and acids. ${ }^{9}$ With our protocol for the highly diastereoselective synthesis of trans-2,3-disubstituted vinylic epoxides in hand, we utilized the highly enantioselective reduction of 1 -undecyn-3-one to make optically active (R)-1-undecyn-3-ol, ${ }^{10}$ which can be easily converted to the optically active (R)-1,2-dodecadien-4-ol (1b) (Scheme 3). ${ }^{7}$ Its cyclization reaction with ($1 E$)-hexenyl iodide, p-methylphenyl iodide, and p-methoxyphenyl iodide afforded $(R, R) \mathbf{- 3 k},(R, R)-\mathbf{3 1}$, and $(R, R)-\mathbf{3 m}$, respectively (Scheme 3). ${ }^{11}$

In conclusion, we have developed a mild, good-yielding, and highly diastereoselective methodology for the synthesis of trans-2,3-disubstituted vinylic oxiranes. Using the readily available chiral 2,3 -allenols, ${ }^{12}$ the corresponding vinylic oxiranes with high ee value can be synthesized. ${ }^{13-15}$ Due to the wide synthetic importance of vinylic oxiranes, this methodology will show its utility in organic synthesis.

[^2]
Scheme 3

Acknowledgment. We thank the National Natural Science Foundation of China, Chinese Academy of Sciences, and Shanghai Municipal Committee of Science and Technology for financial support.

Supporting Information Available: Experimental details and ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3 a}-\mathbf{0}$ (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA9904888

[^3]
[^0]: (1) Schuster, H. F.; Coppola, G. M. Allenes in Organic Synthesis; John Wiley \& Sons: New York, 1988. The Chemistry of Ketenes, Allenes, and Related Compounds; Patai, S., Ed.; John Wiley \& Sons: New York, 1980; Part 1.
 (2) Walkup, R. D.; Kim, S. W.; Wagy, S. D. J. Org. Chem. 1993, 58, 6486. Fox, D. N. A.; Lathbury, D.; Mahon, M. F.; Malloy, K. C.; Gallagher, T. J. Am. Chem. Soc. 1991, 113, 2652. Kimura, M.; Fugami, K.; Tanaka, S.; Tamaru, Y. J. Org. Chem. 1992, 57, 6377. Yamamoto, Y. Y.; Al-Masum, M.; Asao, N. J. Am. Chem. Soc. 1994, 116, 6019. Trost, B.; Gerusz, V. J. Am. Chem. Soc. 1995, 117, 5156.
 (3) For some of our recent results in allenes, see: (a) Ma, S.; Shi, Z.; Li, L. J. Org. Chem. 1998, 63, 4522. (b) Ma, S.; Wei, Q. J. Org. Chem. 1999, 64, 1026. (c) Ma, S.; Shi, Z. J. Org. Chem. 1998, 63, 6387.
 (4) Olsson, L.-I.; Claesson, A. Synthesis 1979, 743.
 (5) Marshall, J. A.; Pinney, K. G. J. Org. Chem. 1993, 58, 7180. Marshall, J. A.; Yu, R. H.; Perkins, J. F. J. Org. Chem. 1995, 60, 5550.
 (6) Shimizu, I.; Sugiura, T.; Tsuji, J. J. Org. Chem. 1985, 50, 537.
 (7) Olsson, L.-I.; Claesson, A.; Bogentoft, C. Acta Chem. Scand 1974, 28 , 765.

[^1]: (8) Maruoka, K.; Hasegawa, M.; Yamamoto, H. J. Am. Chem. Soc. 1986, 108, 3827. Maruoka, K.; Ooi, T.; M.; Yamamoto, H. J. Am. Chem. Soc. 1989, 111, 6431. Jung, M. E.; D’Amico, D. C. J. Am. Chem. Soc. 1993, 115, 12208.

[^2]: (9) Jung, M. E.; D'Amico, D. C. J. Am. Chem. Soc. 1995, 117, 7379.
 (10) Nishizawa, M.; Yamada, M.; Noyori, R. Tetrahedron Lett. 1981, 22, 247.
 (11) \%ee was determined by HPLC with a CHIRALPAK AD column ($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ from Daicel Chemical Ind., Ltd.).
 (12) According to Corey's method, chiral 2,3-dienols can be synthesized in one step via the reaction of aldehydes with chiral borane reagents. This makes our methodology highly attractive. Corey, E. J.; Yu, C.-M.; Lee, D.H. J. Am. Chem. Soc. 1990, 112, 878.

[^3]: (13) (a) For a seminal paper of the asymmetric Sharpless epoxidation reaction of allylic alcohols, see: Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. (b) For kinetic resolution of racemic allylic alcohols, see: Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237.
 (14) For kinetic resolution of racemic terminal oxiranes, see: Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936.
 (15) For some of the most recent advances in the asymmetric epoxidation of simple alkenes, see: Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112, 2801. Irie, R.; Noda, K.; Ito, Y.; Matsumoto, N.; Katsuki, K. Tetrahedron Lett. 1990, 31, 7345. Tu, Y.; Wang, Z.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806. Yang, D.; Yip, Y.; Tang, M.; Wong, M.; Zheng, J.; Cheung, K. J. Am. Chem. Soc. 1996, 118, 491.

